Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.
نویسندگان
چکیده
The subject of this paper, sun leaves are thicker and show higher photosynthetic rates than the shade leaves, is approached in two ways. The first seeks to answer the question: why are sun leaves thicker than shade leaves? To do this, CO2 diffusion within a leaf is examined first. Because affinity of Rubisco for CO2 is low, the carboxylation of ribulose 1,5-bisphosphate is competitively inhibited by O2, and the oxygenation of ribulose 1,5-bisphosphate leads to energy-consuming photorespiration, it is essential for C3 plants to maintain the CO2 concentration in the chloroplast as high as possible. Since the internal conductance for CO2 diffusion from the intercellular space to the chloroplast stroma is finite and relatively small, C3 leaves should have sufficient mesophyll surfaces occupied by chloroplasts to secure the area for CO2 dissolution and transport. This explains why sun leaves are thicker. The second approach is mechanistic or 'how-oriented'. Mechanisms are discussed as to how sun leaves become thicker than shade leaves, in particular, the long-distance signal transduction from mature leaves to leaf primordia inducing the periclinal division of the palisade tissue cells. To increase the mesophyll surface area, the leaf can either be thicker or have smaller cells. Issues of cell size are discussed to understand plasticity in leaf thickness.
منابع مشابه
Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.
In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf...
متن کاملLeaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.
We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overal...
متن کاملEffect of local irradiance on CO(2) transfer conductance of mesophyll in walnut.
The acclimation responses of walnut leaf photosynthesis to the irradiance microclimate were investigated by characterizing the photosynthetic properties of the leaves sampled on young trees (Juglans nigraxregia) grown in simulated sun and shade environments, and within a mature walnut tree crown (Juglans regia) in the field. In the young trees, the CO(2) compensation point in the absence of mit...
متن کاملEffects of Shade Treatments on Photosynthetic Characteristics, Chloroplast Ultrastructure, and Physiology of Anoectochilus roxburghii
Anoectochilus roxburghii was grown under different shade treatments-50%, 30%, 20%, and 5% of natural irradiance-to evaluate its photosynthetic characteristics, chloroplast ultrastructure, and physiology. The highest net photosynthetic rates and stomatal conductance were observed under 30% irradiance, followed in descending order by 20%, 5%, and 50% treatments. As irradiance decreased from 50% t...
متن کاملPhotosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen.
We exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years. Our objective was to compare photosynthetic acclimation to elevated [CO2] between species of contrasting shade tolerance, and to determine if soil N or shading m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 57 2 شماره
صفحات -
تاریخ انتشار 2006